1,210 research outputs found

    Research on transverse parametric vibration and fault diagnosis of multi-rope hoisting catenaries

    Get PDF
    According to application characteristics of the multi-rope friction hoisting catenaries, a linear transverse parametric vibration model of axially moving string was setup with fixed length and inhomogeneous boundary conditions. The Galerkin method was applied to discretize the dynamic governing equations. Using the Newmark method, the coupling coefficient second-order ODEs were solved. The parametric resonance vibrations of catenaries generated by tension variation along with forced boundary excitations were diagnosed with analytical and experimental validations. The transverse vibration amplitudes and frequencies of catenaries measured and analyzed by non-contact video gauge method were consistent with simulation outputs. The simulation outputs were based on practically measured parameters such as boundary displacement excitations and tension variations. The research results indicated that tension imbalance distributions of the catenaries could change their natural frequencies and result in transverse resonance under boundary harmonic displacement excitations. Therefore specific measures should be provided to maintain tension balance in multi-rope hoisting applications

    Self-learning PID Control for X-Y NC Position Table with Uncertainty Base on Neural Network

    Get PDF
    An adaptive radical basis function (RBF) neural network PID control scheme for X-Y position table is proposed by the paper. Firstly, X-Y position table model is established, controller based on neutral network is used to learn adaptive and compensate uncertainty model of X-Y position table, neutral network is used to study model. PID neural network controller base on augmented variable method is designed. PID controller is used as assistant direction error controller, neural network parameters base on stochastic gradient algorithm can be adjust adaptive on line. The simulation results show that the presented controller has important engineering value

    A Mine Main Fans Switchover System with Lower Air Flow Volatility based on Improved Particle Swarm Optimization Algorithm

    Get PDF
    A reliable ventilation system is essential for maintaining a comfortable working environment and ensuring safety production in an underground coal mine. The automated fan switchover technique was developed for changing the main fan for maintenance with lower air flow volatility of underground mine in the switchover process. This article established the optimization model in the main fans switchover process, used the improved particle swarm optimization algorithm to solve the model, and achieved minimum air flow volatility in the fans switchover process. Compared to previous studies, computer simulations have shown that the proposed algorithm can effectively find the global optimal solution with less initial parameters and achieved lower air flow volatility in underground mine. The particle swarm optimization solution, searching diversity, prevents it from confining to local optimal solutions and enhances convergence. The reasonable step length is beneficial to reduce the air flow volatility and main fans switchover time. The air flow volatility is larger comparatively when some doors are nearly open or closed fully at the start—stop phase of the switchover process. A case application in a China\u27s domestic coal mine shows that the air flow volatility of the underground mine in the main fans switchover process is no more than 0.4%

    Support Vector Regression Method for Wind Speed Prediction Incorporating Probability Prior Knowledge

    Get PDF
    Prior knowledge, such as wind speed probability distribution based on historical data and the wind speed fluctuation between the maximal value and the minimal value in a certain period of time, provides much more information about the wind speed, so it is necessary to incorporate it into the wind speed prediction. First, a method of estimating wind speed probability distribution based on historical data is proposed based on Bernoulli’s law of large numbers. Second, in order to describe the wind speed fluctuation between the maximal value and the minimal value in a certain period of time, the probability distribution estimated by the proposed method is incorporated into the training data and the testing data. Third, a support vector regression model for wind speed prediction is proposed based on standard support vector regression. At last, experiments predicting the wind speed in a certain wind farm show that the proposed method is feasible and effective and the model’s running time and prediction errors can meet the needs of wind speed prediction

    The Poly (ADP-Ribose) Polymerase Inhibitor Veliparib and Radiation Cause Significant Cell Line Dependent Metabolic Changes in Breast Cancer Cells.

    Get PDF
    Breast tumors are characterized into subtypes based on their surface marker expression, which affects their prognosis and treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors have shown promising results in clinical trials, both as single agents and in combination with other chemotherapeutics, in several subtypes of breast cancer patients. Here, we used NMR-based metabolomics to probe cell line-specific effects of the PARP inhibitor Veliparib and radiation on metabolism in three breast cancer cell lines. Our data reveal several cell line-independent metabolic changes upon PARP inhibition. Pathway enrichment and topology analysis identified that nitrogen metabolism, glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis and taurine and hypotaurine metabolism were enriched after PARP inhibition in all three breast cancer cell lines. Many metabolic changes due to radiation and PARP inhibition were cell line-dependent, highlighting the need to understand how these treatments affect cancer cell response via changes in metabolism. Finally, both PARP inhibition and radiation induced a similar metabolic responses in BRCA-mutant HCC1937 cells, but not in MCF7 and MDAMB231 cells, suggesting that radiation and PARP inhibition share similar interactions with metabolic pathways in BRCA mutant cells. Our study emphasizes the importance of differences in metabolic responses to cancer treatments in different subtypes of cancers
    • …
    corecore